Niels ten Oever @nielstenoever niels@digitaldissidents.org

> Davide Beraldo d.beraldo@uva.nl

DATACTIVE

Analyzing mailinglists with python

BigBang?

- Tool for the analysis of collaborative projects
- https://github.com/datactive/bigbang
- https://github.com/nllz/bigbang
- Current focus on:
 - Mailing lists
 - Git repos
 - (a little bit of) ML + Git

History

• Originally developed by UC Berkeley researcher Sebastian Benthall ~2015

• Picked up by DATACTIVE project last year

• Let's move it on!

For what?

• Originally thought for collaborative open source projects (~recursive publics)

• Works great for any organization using mailing lists and/or git (e.g. internet governance bodies)

Analysis

- Descriptive statistics
- Network analysis
- Text analysis

• Bunch of Jupyter notebooks developed so far

Libraries

- **Pandas** (dataframe object)
- **NetworkX** (network analysis)
- **Numpy** (data processing)
- NLTK (text analysis)

Core modules

- **bin/collect_mail.py** (collect email data from url or list of urls)
- **bin/collect_git.py** (collect git repos data from names or urls)
- archive.py (represent collected email data in a Archive object, computes some basic statistics)
- graph.py (generate network graphs and metrics)
- process.py (performs some useful data transformation)
- threads.py (transform emails into Threads objects)

Notebooks – Mailinglists

- analyze senders --> distribution of top-senders (including smart ways to deal with name/addresses inconsistency)
- participants over time --> time series on email senders
- auditing [single user] --> follow a single user's contribution over time
- collaboration robustness --> various analysis on how relationships between users evolve (duration, reciprocity, etc.)
- cohort analysis --> trend over time of new users joining the discussion
- interaction network --> generate and visualize graph of interactions in the mailinglists

Notebooks – Mailinglists 2

- assortativity study --> computes degree assortativity on email reply network (whether users tend to interact with likely central users)
- single word trend / multiple word trend --> trend of a specified word / multiple words in a single / multiple mailinglist
- special words analysis --> various interesting ways to identify special words in the mail texts; unique / common words between mailing lists; words introduced by different people in different lists; words introduced by same people in different lists; words that quickly flow from a user to others
- users top words --> most recurrent words for specified users
- who said what words -> distribution of specified words for specified users
- **threads** --> some analyses about threads in a mailing list: number of threads; distribution of messages per thread; duration of a thread; properties of a single thread

Notebooks - Git

- **committer dominance** --> identify key-contributors to projects
- git commit network --> create graph where nodes are commits and edges connect parent and child commits
- git diffs --> create bipartite graph where nodes are committers and files, and edges are files edited by committers
- git interaction graph --> create graph of collaborations between contributors of a repository
- **multi git repos** --> allows to collect data from multiple repositories, and performs: bi-partite graph with nodes as committers and files and as committers and repositories; projected graph of repositories sharing committers

Notebooks – ML + Git

• git collection --> compare trends in commits and emails; identifies top-committers; distribution of contributions by cohorts of committers

• workers and talkers --> compares the activity of contributors to a project in terms of commits and in terms of emails (tests whether those who talk a lot are also those who work or not)

Analyse senders

Christine Runnegar <runnegar@isoc.org> Karl Dubost <karld@opera.com> David Singer <singer@apple.com> Rigo Wenning <rigo@w3.org> Mark Lizar <info@smartspecies.com> Thomas Roessler <tlr@w3.org> Hannes Tschofenig <Hannes.Tschofenig@gmx.net> Henry Story <henry.story@bblfish.net> Nicholas Doty <npdoty@w3.org> Robin Wilton <wilton@isoc.org> Fred Andrews <fredandw@live.com> Joseph Lorenzo Hall <joe@cdt.org> Richard Barnes <richard.barnes@gmail.com> Bjoern Hoehrmann <derhoermi@gmx.net> "Chappelle, Kasey, VF-Group" <Kasey.Chappelle@vodafone.com> "Perez, Aram" <aramp@qualcomm.com> Kingsley Idehen <kidehen@openlinksw.com> Frederick.Hirsch@nokia.com

From

From

Multiple words trend

Cohorts

Network Graphs

Open Issues

- Consolidate notebooks into core
- Replace deprecated Pandas.DataFrame methods
- Installation issues on Mac / Windows
- Collect Google Hangout
- Automate NLTK download
- How to deal with Lurkers?
- Implement gender detection
- Inter-Mailinglist network analysis
- (114 and counting...)

Ethical Concerns

Public data pulled from publicly accessible mailing list archives (but public != ethical)

• Anonymization of addresses / visualizations

ICANN example

Internet Corporation for Assigned Names a Numbers

ICANN: Organization & community of stakeholders

Organization: In charge of managing Domain Names System (DNS) and coordination of distribution of IP addresses

Community: Develops ICANN policies and procedures

Currently at crucial turning point (transitioning stewardship from US to global multistakeholder community)

>> How do listserv interactions shape discourses and policy decisions?

Process overview

Relevance (or: why should you care?)

Our research contributes to understanding

- how (policy) discourses evolve in online communities
- network configurations in online communities
- discursive and networking tactics of civil society policy advocacy
- (multistakeholder) institutional design in the field of internet governance

NCUC: network diagram

NCUC: human rights language development

3. IPC: network diagram

Comparing NCUC & IPC

4. Comparing CCWG & WP4

<u>WP4</u>

A temporary working group focused exclusively on HRs issues

Actor Activity and Representation

Human Rights language through time

How to

Installation

We will be working with ipython notebooks. In order to do this you will need to follow these simple steps:

1. Download Anaconda.

You can download the installer from here: Windows: http://repo.continuum.io/archive/Anaconda2-4.0.0-Windows-x86_64.exe Mac: http://repo.continuum.io/archive/Anaconda2-4.0.0-MacOSX-x86_64.pkg Linux: http://repo.continuum.io/archive/Anaconda2-4.0.0-Linux-x86_64.sh

2. Install Anaconda.

You can simply run the installer, Windows and Mac have a graphical installer, for Linux: Open a terminal Go to the download directory (probably: \$ cd Downloads) and then: \$ bash Anaconda2-4.0.0-MacOSX-x86_64.sh

Go for the standard install (so let Anaconda add Anaconda to the bash PATH). Else we'll get into trouble later.

3. Download and install Git.

You can download the installer from here: Windows: https://git-scm.com/download/win Mac: https://git-scm.com/download/mac Linux (Ubunu/Debian): open a terminal and type: \$ sudo apt-get install git

4. Clone the BigBang repository. Open a command prompt (Windows) or a terminal (Mac, Linux) and type: git clone https://github.com/nllz/bigbang/

5. Create an Anaconda environment

conda create -n bigbang python

6. Install BigBang

cd bigbang bash conda-setup.sh (Mac, Linux) conda-setup.sh (Windows)